Устройства статора трехфазного синхронного генератора
- Устройства статора трехфазного синхронного генератора
- § 114. Устройство синхронных генераторов
- 24. Устройство трехфазного синхронного генератора.
- 25. Принцип работы трехфазного синхронного генератора.
- Принцип работы и устройство синхронного генератора переменного тока
- Устройство
- Принцип работы
- Регулирование частоты
- Регулирование ЭДС
- Применение
- Генераторы переменного тока
- Синхронный генератор. Принцип действия
- Способы возбуждения синхронных генераторов
- Асинхронный генератор. Отличия от синхронного
- Назначение и устройство синхронных машин
- Трехфазные синхронные генераторы
Устройства статора трехфазного синхронного генератора
§ 114. Устройство синхронных генераторов
Статор. Статор синхронного генератора, как и других машин переменного тока, состоит из сердечника, набранного из листов электротехнической стали, в пазах которого укладывается обмотка переменного тока, и станины — чугунного или сварного из листовой стали кожуха.
В выштампованные на внутренней поверхности сердечника пазы укладывается обмотка статора. Статорная обмотка синхронного генератора состоит из трех фазных обмоток и ее выполняют по тому же принципу, что и ста-торную обмотку асинхронного двигателя. Обмотка статора выполняется из секций, изготовленных обычно из медных проводников круглого или прямоугольного сечения.
Изоляция обмотки выполняется особо тщательно, так как машина работает обычно при высоких напряжениях. В качестве изоляции применяют миканит и миканитовую ленту.
На рис. 268 дан внешний вид статора синхронного генератора.
Рис. 268. Внешний вид статора синхронного генератора
Ротор. Роторы синхронных машин по конструкции делятся на два типа: явнополюсные (т. е. с явно выраженными полюсами) и неявнополюсные (т. е. с неявно выраженными полюсами).
На рис. 269 показаны схемы устройства синхронных генераторов с явнополюсным и неявнополюсным роторами.
Рис. 269. Схема устройства синхронных генераторов с явнополюсным (а) и неявнополюсным (б) роторами
Та или иная конструкция ротора диктуется соображениями механической прочности. У современных генераторов, вращающихся от быстроходных двигателей (паровая турбина), окружная скорость ротора может достигать 100-160 м/сек. Поэтому быстроходные генераторы имеют неявнополюсный ротор. Скорость вращения быстроходных генераторов составляет 3000 об/мин и 1500 об/мин.
Явнополюсный ротор представляет собой стальную поковку. К ободу ротора прикрепляются полюсы, на которые надеваются катушки возбуждения, соединяемые последовательно между собой. Концы обмотки возбуждения присоединяются к двум кольцам, укрепленным на валу ротора. На кольца накладываются щетки, к которым присоединяется источник постоянного напряжения. На рис. 270 показан внешний вид явнополюсного ротора. Обычно постоянный ток для возбуждения ротора дает генератор постоянного тока, сидящий на одном валу с ротором и называемый возбудителем. Мощность возбудителя равна 0,25-1% от номинальной мощности синхронного генератора. Номинальные напряжения возбудителей 60-350 в.
Рис. 270. Внешний вид явнополюсного ротора
На рис. 271 показана схема возбуждения синхронной машины.
Рис. 271. Схема возбуждения синхронной машины: 1 — контактные кольца, 2 — ротор, 3 — статор, 4 — шунтовый регулятор
Имеются также синхронные генераторы с самовозбуждением. Постоянный ток для возбуждения ротора получается с помощью полупроводниковых выпрямителей, подключаемых к обмотке статора генератора. В первый момент слабое поле остаточного магнетизма вращающегося ротора индуктирует в обмотке статора незначительную переменную э.д.с. Селеновые выпрямители, подключенные к переменному напряжению, дают постоянный ток, который усиливает поле ротора, и напряжение генератора увеличивается. Неявнополюсный ротор изготовляется из целой стальной поковки, подвергаемой сложной термической и механической обработке. Для примера приведем данные ротора турбогенератора, изготовленного заводом «Электросила», мощностью 100 тыс. квт при n = nн = 3000 об/мин. Диаметр ротора D = 0,99 м, длина l = 6,35 м. Окружная скорость ротора 155 м/сек. Поковка ротора в обработанном виде весит 46,5 m.
В осевом направлении по окружности неявнополюсного ротора фрезеруют пазы, куда укладывается обмотка возбуждения. Обмотка в пазах закрепляется при помощи металлических (стальных или бронзовых) клиньев. Лобовые части обмотки закрепляются бандажными металлическими кольцами.
На рис. 272 показан общий вид неявнополюсного ротора турбогенератора в готовом виде.
Рис. 272. Общий вид неявнополюсного ротора в сборе: 1 — обмотка возбуждения; 2 — контактные кольца, 3 — полюс, 4 — клин, 5 — проводники обмотки возбуждения, 6 — вентиляционные каналы, 7 — изоляция
При конструировании электрических машин и трансформаторов большое внимание конструкторы обращают на вентиляцию машин. Для синхронных генераторов применяется воздушное и водородное охлаждение.
Воздушное охлаждение осуществляется при помощи вентиляторов, укрепленных на валу с обеих сторон ротора (для генераторов мощностью от 1,5 до 50 тыс. квт) или расположенных под машиной в отверстии фундамента (для более мощных генераторов).
Массы холодного воздуха, поступающие для вентиляции, во избежание загрязнения машины пылью проходят через фильтры. При замкнутой системе вентиляции машина охлаждается одним и тем же объемом воздуха. Воздух, пройдя через машину, нагревается и поступает в воздухоохладители, затем снова нагнетается в машину и т. д. Для целей охлаждения служит также система вентиляционных каналов, устроенных в отдельных частях машины.
Наиболее эффективным способом охлаждения машины является водородное охлаждение. Водород, обладающий в 7,4 раза большей теплопроводностью, чем воздух, лучше отводит тепло от нагретых частей машины. Потери на трение о воздух при воздушном охлаждении составляют около 50% от суммы всех потерь в машине. Водород имеет удельный вес в 14,5 раза меньше, чем воздух. Поэтому трение о водород резко уменьшается. Водород способствует также сохранению изоляции и лаковых покрытий машины.
Внешний вид явнополюсного синхронного генератора с возбудителем показан на рис. 273, а неявнополюсного синхронного генератора мощностью 50 тыс. квт — на рис. 274.
Рис. 273. Общий вид синхронного генератора с возбудителем
Рис. 274. Внешний вид синхронного генератора мощностью 50 тыс. квт
Гидрогенераторы приводятся во вращение гидравлическими турбинами. Эти турбины чаще всего имеют вертикальный вал с низким числом оборотов. Тихоходный синхронный генератор имеет большое число полюсов и в связи с этим большие размеры.
Так, например, гидрогенератор типа СВ 1200 /170 96 мощностью 50 тыс. квт, изготовленный заводом «Электросила» им. С. М. Кирова, имеет общий вес 1142 m, диаметр статора 14-м, общую высоту 8,9 м, число полюсов 96.
На рис. 275 показана наглядная схема синхронного генератора с возбудителем, питающим силовую и осветительную нагрузку. На рис. 276 дана электрическая схема соединений синхронного генератора с нагрузкой.
Рис. 275. Схема синхронного генератора с возбудителем
Рис. 276. Электрическая схема соединений синхронного генератора с нагрузкой
Обмотки статоров синхронных генераторов, как уже указывалось, выполняются так же, как обмотки статоров асинхронных двигателей. Все шесть концов трехфазной обмотки генератора обычно выводятся на его щиток. Соединяя три конца обмоток в одну общую нулевую точку и выводя три начала обмоток во внешнюю сеть, мы получим соединение обмоток звездой. Соединяя конец первой обмотки с началом второй, конец второй с началом третьей, конец третьей с началом первой обмотки и сделав от точек соединений три отвода во внешнюю сеть, получим соединение обмоток треугольником.
Статорные обмотки трехфазных генераторов в большинстве случаев соединяют в звезду.
Качество электрической энергии, вырабатываемой генераторами переменного тока, оценивается:
частотой э.д.с., которая должна быть строго равна заданному значению f1;
величиной напряжения на зажимах, которое должно быть равно заданной величине Uн;
форма кривой э.д.с. должна быть возможно ближе к синусоиде.
Заданное значение частоты э.д.с. обеспечивается постоянством скорости вращения первичного двигателя. Необходимая величина напряжения Uн достигается регулировкой тока возбуждения. Синусоидальная форма кривой э.д.с. достигается в явнополюсных машинах увеличением воздушного зазора под краями полюсных наконечников и другими мерами. В неявнополюсных машинах синусоидальный характер э.д.с., индуктированной в обмотке статора, обеспечивается соответствующим распределением витков обмотки возбуждения в пазах ротора.
24. Устройство трехфазного синхронного генератора.
Синхронная машина состоит из двух основных частей — статора и ротора Статор, являющийся неподвижной частью машины, по конструкции аналогичен статору асинхронного двигателя. Трехфазная обмотка статора выполнена с таким же числом полюсов, как и ротора Ротор — вращающаяся часть машины — представляет собой систему полюсов, на которых расположена обмотка возбуждения. Ротор служит для создания основного магнитного потока. По конструкции различают роторы с явно и неявно выраженными полюсами.
Ротор с явно выраженными полюсами (рис 62,а) состоит из стального вала, роторной звезды и полюсов возбуждения с полюсными катушками, укрепленными на ободе роторной звезды.
При больших частотах вращения (3 тыс об/мин), исходя из соображений механической прочности, ротор выполняют неявнопо-люсным (рис 62,6) с выфрезерованнымн на его поверхности продольными пазами, в которые закладывают обмотку возбуждения.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящпй контакт. Через скользящий кон- такт обмотка возбуждения подключается к источнику постоянного тока. При подключе нии обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток Ф, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения п ротора равна частоте вращения n1 магнитного поля статора.
25. Принцип работы трехфазного синхронного генератора.
Синхронными называются электрические машины, частота вращения которых связана постоянным соотношением с частотой сети переменного тока, в которую эта машина включена. Синхронные машины служат генераторами переменного тока на электрических станциях, а синхронные двигатели применяются в тех случаях, когда нужен двигатель, работающий с постоянной частотой вращения. Синхронные машины обратимы, т.е. они могут работать и как генераторы, и как двигатели, хотя в конструкциях современных синхронных генераторов и двигателей имеются небольшие, но практически весьма существенные отличия. Синхронная машина переходит от режима генератора к режиму двигателя в зависимости от того, действует ли на ее вал вращающая или тормозящая механическая сила. В первом случае она получает на валу механическую, а отдает в сеть электрическую энергию, а во втором случае она потребляет из сети электрическую энергию, а отдает на валу механическую энергию.
Основной магнитный поток синхронного генератора, создаваемый вращающимся ротором, возбуждается посторонним источником-возбудителем, которым обычно является генератор постоянного тока небольшой мощности, установленный на общем валу с синхронным генератором. Постоянный ток от возбудителя подается на ротор через щетки и контактные кольца, установленные на валу ротора.
На валу ротора устанавливают контактные кольца, к которым присоединяют выводы обмотки возбуждения. Кольца надежно изолируют от вала и друг от друга. К кольцам прилегают щетки,
укрепленные в щеткодержателях, образуя скользящий контакт. Через скользящий контакт обмотка возбуждения подключается к источнику постоянного тока. При подключении обмотки возбуждения вращающегося ротора к источнику постоянного тока создается вращающийся вместе с ротором магнитный поток, пересекающий трехфазную обмотку статора и по закону электромагнитной индукции в каждой фазной обмотке образуется наводящий э д с.
Э д с статора составляет симметричную трехфазную э д с, и при подключении к обмотке статора симметричной нагрузки эта обмотка нагружается симметричной системой токов. Машина при этом работает в режиме генератора.
Как и все электрические машины, синхронные машины обратимы. У синхронных машин частота вращения ротора равна частоте вращения магнитного поля статора.
Принцип работы и устройство синхронного генератора переменного тока
Электричество – единственный вид энергии, которую легко можно передать на большие расстояния, а затем преобразовать её в механическую, тепловую или превратить в световое излучение. Саму же электроэнергию также можно получить разными способами: химическим, тепловым, механическим, фотоэлектрическим и др. Но именно механический способ, который основан на применении генераторов, оказался самым эффективным. Среди этих источников электроэнергии широкое применение нашёл синхронный генератор переменного тока.
Практически вся электроэнергия, используемая в быту и на производстве, вырабатывается генераторами этого типа. Они заслуживают того, чтобы более подробно рассмотреть их устройство и разобраться в принципе работы этих удивительных синхронных машин.
Устройство
В конструкции синхронных генераторов используются две основные рабочие детали – вращающийся ротор и неподвижный статор. На валу ротора располагаются постоянные магниты либо обмотки возбуждения. Магниты имеют зубчатую форму, с противоположно направленными полюсами.
Бесщёточные генераторы.
Обмотки статора размещают таким образом, чтобы их сердечники совпадали с выступами магнитных полюсов ротора, или с сердечниками катушек ротора. Количество зубцов магнита, обычно, не превышает 6. При такой конструкции вырабатываемый ток снимается непосредственно с обмоток статоров. Другими словами, статор выступает в роли якоря.
В принципе, постоянные магниты можно расположить на статоре, а рабочие обмотки, в которых будет индуцироваться ЭДС, — на роторе. Работоспособность генератора от этого не изменится, однако потребуются кольца и щётки для снятия напряжения с обмоток якоря, а это, чаще всего, не рационально.
Схематическое изображение бесщеточного генератора без обмоток возбуждения изображено на рис. 1.
Рис. 1. Модель генератора с магнитным ротором
Пояснение:
- схема устройства;
- схема расположения магнитных полюсов на якоре. Здесь буквами NS обозначено коаксиальный магнит с полюсами, а литерой R – стальной магнитопровод ротора в виде когтеобразных наконечников.
- модель генератора в разрезе. Выводы фазных обмоток статора соединены «звездой».
Синхронные машины с индукторами.
Заметим, что постоянные магниты в качестве ротора используются в альтернаторах небольшой мощности. В мощных электрических машинах всегда применяются обмотки индуктора с независимым возбуждением. Независимым источником питания является маломощный генератор постоянного тока, смонтированный на валу синхронного двигателя.
Существуют конструкции синхронных генераторов малой и средней мощности, с самовозбуждающимися обмотками. Для возбуждения индуктора выпрямленный ток фазных обмоток подаётся через щётки на кольца, расположенные на валу статора. Строение такого альтернатора показано на рис. 2.
Рис. 2. Строение синхронного генератора средней мощности
Обратите внимание на наличие щёток, на которые подаётся питания от независимого источника.
По количеству фаз синхронные генераторы делятся на:
- однофазные;
- двухфазные;
- трёхфазные.
По конструкции ротора можно выделить генераторы с явновыраженными полюсами и с неявновыраженными. В неявнополюсном роторе отсутствуют выступы, а катушки провода якоря спрятаны в пазы статора.
По способу соединения фазных обмоток различают трёхфазные генераторы:
- соединённые по шестипроводной системе Тесла (не нашли практического применения);
- «звезда»;
- «треугольник»;
- сочетание шести обмоток, соединённых в виде одной «звезды» и «треугольника». Это соединение ещё называют «Славянка».
Самое распространённое соединение – «звезда» с нейтральным проводом.
Принцип работы
Рассмотрим принцип генерации тока на примере контурной рамки, помещённой между магнитными полюсами. (Рис. 3)
Рис. 3. Схема, объясняющая принцип работы генератора
Если заставить рамку вращаться (по направлению стрелок), то она будет пересекать магнитные силовые линии. При этом, по закону электромагнитной индукции, в рамке индуцируется электрический ток, который проявляется при подключении нагрузки к щёткам. Его направление можно определить по правилу буравчика. На схеме направление тока показано чёрными стрелками.
Обратите внимание на то, что на участках рамки ab и cd ток движется в противоположных направлениях. Эти направления меняются при переходе участков рамки от одного полюса к другому полюсу магнита. Если каждый вывод рамки подключить к отдельному кольцу (на рисунке они подключены к коллектору!), то на выходе мы получим переменный ток.
Величина тока пропорциональна скорости вращения ротора. Кроме того, переменный ток характеризуется ещё одним параметром – частотой. Эта величина напрямую зависит от частоты вращения вала.
Частота тока в электросетях строго соблюдается. В России и в ряде других стран она составляет 50 Гц, то есть 50 колебаний в секунду.
Этот параметр довольно легко вычислить из таких соображений: за один оборот рамки (или двухполюсного магнита) происходит одно изменение направления тока. Если вал синхронного генератора делает 1 оборот в секунду, то частота переменного тока составит 1 Гц. Для получения частоты 50 Гц необходимо обеспечить 50 оборотов статора в секунду или 3000 об./мин.
При возрастании числа полюсов заданная частота удерживается путём снижения скорости вращения статора. (обратно пропорциональная зависимость). Так, для четерёхполюсного статора (число полюсов в два раза больше) для поддержания частоты 50 Гц скорость вращения вала необходимо снизить в два раза. Соответственно если используется 6 полюсов, то частота вращения вала должна уменьшиться в три раза – до 1000 об./мин.
Заметим, что в некоторых странах, таких как США, Япония и др. существуют другие стандарты – 60 Гц, а переменный 400 Гц используется, например, в бортовой сети современных самолётов.
Регулирование частоты
Достигнуть требуемых параметров частоты можно 2 путями:
- Сконструировать генератор с определённым количеством полюсов электромагнитов.
- Обеспечить соответствующую расчётную частоту вращения вала.
Например, в тихоходных гидротурбинах, вращающихся со скоростью 150 об./мин. для регулирования частоты число полюсов синхронных генераторов увеличивают до 40. На дизельных электростанциях, при скоростях вращения 750 об./мин., оптимальное число полюсов – 8.
Регулирование ЭДС
В связи с изменениями параметров активных нагрузок возникает необходимость в выравнивании номинальных напряжений. Несмотря на то, что ЭДС индукции синхронного генератора связана со скоростью вращения ротора, однако, из-за требований по соблюдению стабильной частоты, этим способом нельзя изменять указанный параметр. Но параметры магнитной индукции можно изменить путём снижения или увеличения магнитного потока, который зависит от количества витков обмотки индуктора и величины тока возбуждения.
Регулирование осуществляется путём включения в цепь катушек возбуждения дополнительных реостатов, электронных схем или регулировкой тока генератора-возбудителя (Рис. 4). В случае использования альтернаторов с постоянными магнитами, в таких устройствах напряжение регулируется внешними стабилизаторами.
Рис. 4. Схема регулировки напряжения
Благодаря малому весу и отличным токовым характеристикам синхронные генераторы переменного тока нашли применение во всех современных автомобилях. Поскольку бортовая сеть авто использует постоянный ток, конструкции автомобильных генераторов оборудованы трехфазным выпрямителем. Для выпрямляемых переменных токов частота не имеет значения, а вот напряжение должно быть стабильно. Этого добиваются с помощью внешних электронных устройств. На рисунке 5 представлена электрическая схема подключения генератора к бортовой сети современного автомобиля.
Рис. 5. Схема подключения генератора к бортовой сети авто
Применение
У синхронных генераторов переменного тока есть одна важная особенность: они поддаются синхронизации с другими подобными электрическими машинами. При этом синхронные скорости и ЭДС параллельно включенных альтернаторов совпадают, а фазовый сдвиг равен нулю. Данное обстоятельство позволяет применять устройства в промышленной энергетике и подключать резервные генераторы при превышении номинальных мощностей в часы пиковых нагрузок.
Трёхфазные тяговые генераторы применяют на тепловозах. Переменные токи для питания двигателей выпрямляются полупроводниковыми устройствами. Сегодня в России уже выпускаются тепловозы на базе асинхронных электродвигателей, не требующих выпрямления тока. В режиме торможения они работают в качестве асинхронных генераторов.
Синхронные генераторы устанавливают на гибридных автомобилях с целью совмещения тяги ДВС и мощности тяговых электродвигателей. Развивая активную мощность при номинальных нагрузках, они позволяют экономить дорогое топливо.
Существует много других сфер применения. Например, мобильные мини-электростанции, бытовые генераторы тока, как однофазный двигатель и т. п.
Генераторы переменного тока
Генератор — устройство, преобразующее один вид энергии в другой.
В данном случае рассматриваем преобразование механической энергии вращения в электрическую.
Различают два типа таких генераторов. Синхронные и асинхронные.
Синхронный генератор. Принцип действия
Отличительным признаком синхронного генератора является жёсткая связь между частотой f переменной ЭДС, наведённой в обмотке статора, и частотой вращения ротора n , называемой синхронной частотой вращения:
n = f / p
где p – число пар полюсов обмотки статора и ротора.
Обычно частота вращения выражается в об/мин, а частота ЭДС в Герцах (1/сек), тогда для количества оборотов в минуту формула примет вид:
n = 60·f / p
На рис. 1.1 представлена функциональная схема синхронного генератора. На статоре 1 расположена трёхфазная обмотка, принципиально не отличающаяся от аналогичной обмотки асинхронной машины. На роторе расположен электромагнит с обмоткой возбуждения 2, получающей питание постоянным током, как правило, через скользящие контакты, осуществляемые посредством двух контактных колец, расположенных на роторе, и двух неподвижных щёток.
В некоторых случаях в конструкции ротора синхронного генератора вместо электромагнитов могут использоваться постоянные магниты, тогда необходимость в наличии контактов на валу отпадает, но существенно ограничиваются возможности стабилизации выходных напряжений.
Приводным двигателем (ПД), в качестве которого используется турбина, двигатель внутреннего сгорания либо другой источник механической энергии, ротор генератора приводится во вращение с синхронной скоростью. При этом магнитное поле электромагнита ротора также вращается с синхронной скоростью и индуцирует в трёхфазной обмотке статора переменные ЭДС EA , EB и EC , которые будучи одинаковыми по значению и сдвинутыми по фазе относительно друг друга на 1/3 периода (120°), образуют симметричную трёхфазную систему ЭДС.
C подключением нагрузки к зажимам обмотки статора С1, С2 и С3 в фазах обмотки статора появляются токи IA, IB, IC , которые создают вращающееся магнитное поле. Частота вращения этого поля равна частоте вращения ротора генератора. Таким образом, в синхронном генераторе магнитное поле статора и ротор вращаются синхронно. Мгновенное значение ЭДС обмотки статора в рассматриваемом синхронном генераторе
e = 2Blwv = 2πBlwDn
Здесь: B – магнитная индукция в воздушном зазоре между сердечником статора и полюсами ротора, Тл;
l – активная длина одной пазовой стороны обмотки статора, т.е. длина сердечника статора, м;
w – количество витков;
v = πDn – линейная скорость движения полюсов ротора относительно статора, м/с;
D – внутренний диаметр сердечника статора, м.
Формула ЭДС показывает, что при неизменной частоте вращения ротора n форма графика переменной ЭДС обмотки якоря (ста- тора) определяется исключительно законом распределения магнитной индукции B в зазоре между статором и полюсами ротора. Если график магнитной индукции в зазоре представляет собой синусоиду B = Bmax sinα , то ЭДС генератора также будет синусоидальной. В синхронных машинах всегда стремятся получить распределение индукции в зазоре как можно ближе к синусоидальному.
Так, если воздушный зазор δ постоянен (рис. 1.2), то магнитная индукция B в воздушном зазоре распределяется по трапецеидальному закону (график 1). Если же края полюсов ротора «скосить» так, чтобы зазор на краях полюсных наконечников был равен δmax (как это показано на рис. 1.2), то график распределения магнитной индукции в зазоре приблизится к синусоиде (график 2), а, следовательно, и график ЭДС, индуцированной в обмотке генератора, приблизится к синусоиде. Частота ЭДС синхронного генератора f (Гц) пропорциональна синхронной частоте вращения ротора n (об/с)
где p – число пар полюсов.
В рассматриваемом генераторе (см. рис.1.1) два полюса, т.е. p = 1.
Для получения ЭДС промышленной частоты (50 Гц) в таком генераторе ротор необходимо вращать с частотой n = 50 об/с (n = 3000 об/мин).
Способы возбуждения синхронных генераторов
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r1 и подвозбудителя r2 . В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов.
Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
Асинхронный генератор. Отличия от синхронного
Асинхронные генераторы принципиально отличаются от синхронных отсутствием жесткой зависимости между частотой вращения ротора и вырабатываемой ЭДС. Разницу между этими частотами характеризует коэффициент s — скольжение.
здесь:
n — частота вращения магнитного поля (частота ЭДС).
n r — частота вращения ротора.
Более подробно с расчётом скольжения и частоты можно ознакомиться в статье: асинхронные генераторы. Частота.
В обычном режиме электромагнитное поле асинхронного генератора под нагрузкой оказывает тормозной момент на вращения ротора, следовательно, частота изменения магнитного поля меньше, поэтому скольжение будет отрицательным. К генераторам, работающим в области положительных скольжений, можно отнести асинхронные тахогенераторы и преобразователи частоты.
Асинхронные генераторы в зависимости от конкретных условий применения выполняются с короткозамкнутым, фазным или полым ротором. Источниками формирования необходимой энергии возбуждения ротора могут являться статические конденсаторы или вентильные преобразователи с искусственной коммутацией вентилей.
Асинхронные генераторы можно классифицировать по способу возбуждения, характеру выходной частоты (изменяющаяся, постоянная), способу стабилизации напряжения, рабочим областям скольжения, конструктивному выполнению и числу фаз.
Последние два признака характеризуют конструктивные особенности генераторов.
Характер выходной частоты и методы стабилизации напряжения в значительной степени обусловлены способом образования магнитного потока.
Классификация по способу возбуждения является основной.
Можно рассмотреть генераторы с самовозбуждением и с независимым возбуждением.
Самовозбуждение в асинхронных генераторах может быть организовано:
а) с помощью конденсаторов, включенных в цепь статора или ротора или одновременно в первичную и вторичную цепи;
б) посредством вентильных преобразователей с естественной и искусственной коммутацией вентилей.
Независимое возбуждение может осуществляться от внешнего источника переменного напряжения.
По характеру частоты самовозбуждающиеся генераторы разделяются на две группы. К первой из них относятся источники практически постоянной (или постоянной) частоты, ко второй переменной (регулируемой) частоты. Последние применяются для питания асинхронных двигателей с плавным изменением частоты вращения.
Более подробно рассмотреть принцип работы и конструктивные особенности асинхронных генераторов планируется рассмотреть в отдельных публикациях.
Асинхронные генераторы не требуют в конструкции сложных узлов для организации возбуждения постоянным током или применения дорогостоящих материалов с большим запасом магнитной энергии, поэтому находят широкое применение у пользователей передвижных электроустановок по причине своей простоты и неприхотливости в обслуживании. Используются для питания устройств, не требующих жёсткой привязки к частоте тока.
Техническим достоинством асинхронных генераторов можно признать их устойчивость к перегрузкам и коротким замыканиям.
С некоторой информацией по мобильным генераторным установкам можно ознакомиться на странице:
Дизель-генераторы.
Асинхронный генератор. Характеристики.
Асинхронный генератор. Стабилизация.
Замечания и предложения принимаются и приветствуются!
Назначение и устройство синхронных машин
Синхронная машина — машина переменного тока, у которой скорость ротора при постоянной частоте тока в обмотках статора сохраняется постоянной и не зависит от величины нагрузки на валу машины.
Синхронные машины применяют главным образом для преобразования механической энергии первичных двигателей в электрическую, т е. в качестве генераторов электрической энергии переменного тока. Однако синхронные машины используют также в режимах двигателей, компенсаторов реактивной мощности и других устройств.
В промышленных установках наибольшее распространение получили трехфазные синхронные машины. Однофазные синхронные двигатели нашли применение в электроприводах компрессоров, мощных вентиляторов, двигатели малой мощности в различных автоматических приборах и т. п.
Устройство синхронной машины
Трехфазная синхронная машина состоит из неподвижного статора и вращающегося внутри него неявно- или явнополюсного ротора, между ними имеется воздушный зазор, радиальный размер которого определяется номинальной мощностью машины, ее быстроходностью и изменяется от долей до нескольких десятков миллиметров.
Статор такой машины по устройству практически не отличается от статора асинхронной машины, имеет трехфазную обмотку, начала фаз которой обозначают C1, С2, С3 и концы — С4, С5, С6 и выводят к зажимам с аналогичными обозначениями, что позволяет соединять фазы обмотки статора треугольником или звездой.
Фазы обмотки статора трехфазного синхронного генератора соединяют преимущественно звездой, так как это позволяет при трехфазной четырех проводной сети располагать линейными и фазными напряжениями, отличающимися друг от друга в √ 3 раз (рис. 1).
Рис. 1. Схема присоединении трехфазной четырехфазной сети к зажимам обмотки статора трехфазного синхронного генератора при соединении фаз звездой.
Ротор синхронной машины представляет собой электромагнитную систему постоянного тока с обмоткой, имеющей то же число полюсов, что и трехфазная обмотка статора. Магнитные силовые линии замыкаются между соответствующими северными и южными полюсами ротора через воздушный зазор и мапштопровод статора (рис. 2, а, б).
Обмотка ротора, или обмотка возбуждения, получает питание от выпрямителя или небольшого генератора постоянного тока — возбудителя, мощность которого составляет 0,5 — 10% номинальной мощности синхронной машины. Возбудитель может находиться на одном валу с синхронной машиной, приводиться от ее вала гибкой передачей или иметь привод от отдельного двигателя.
Неявнополюспый ротор синхронной машины — сплошной или составной цилиндр из углеродистой или легированной стали с пазами, профрезерованными на его поверхности в осевом направлении. В эти пазы уложена обмотка, выполненная изолированным медным или алюминиевым проводом. Начало И1 и конец И2 этой обмотки присоединяют к двум контактным кольцам, укрепленным на втулке из изолятора, расположенной: на валу машины, и вращающихся вместе с ротором.
К кольцам прижаты неподвижные щетки, от которых выведены провода к зажимам с маркировкой И1 и И2 для присоединения к источнику электрической энергии постоянного тока. Большие зубья цилиндра ротора, в которых нет пазов, образуют полюсы ротора.
Неявнополюсный ротор обычно имеет два или четыре полюса с чередующейся полярностью, его используют в быстроходных синхронных машинах, в частности в турбогенераторах — трехфазных синхронных генераторах, непосредственно соединенных с паровыми турбинами, рассчитанными на частоту вращении 3000 или 1500 оборотов в минуту при частоте переменного тока 50 Гц.
Рис. 2. Устройство трехфазной синхронной машины с ротором: а — неявнополюсным, б — явнополюсным, 1 — станина, 2 — магнитопровод статора, 3 — проводники статора, 4 — воздушный зазор, 5 — полюс ротора, 6 — полюсный наконечник, 7 — праведники ротора, 8 — катушечная обмотка возбуждения, 9 — короткозамкнутая обмотка, 10 — контактные кольца, 11 — щетки, 12 — вал.
Явнополюсный ротор синхронной машины с числом полюсов от четырех и более имеет массивное или шихтованное из стальных листов ярмо, на котором крепятся аналогичной конструкции стальные полюсы, имеющие прямоугольное сечение, заканчивающиеся наконечниками (рис. 2, б). На полюсах расположены соединенные между собой катушки, образующие обмотку возбуждении.
Такой ротор применяют в тихоходных синхронных машинах, которыми могут быть гидрогенераторы и и дизельгенераторы — трехфазные синхронные генераторы, непосредственно соединенные соответственно с гидравлическими турбинами или двигателями внутреннего сгорания, рассчитанными на частоту вращения 1500, 1000, 750 и ниже оборотов в минуту при частоте переменного тока 50 Гц.
Многие синхронные машины имеют на роторе помимо обмотки возбуждения еще медную или латунную короткозамкнутую успокоительную обмотку, которая в неявнополюсном роторе мало отличается от аналогичной обмотки ротора асинхронной машины, а в явнополюсном роторе она выполняется в виде неполной короткозамкнутой обмотки, стержни которой заложены только в пазы полюсных наконечников и отсутствуют в междуполюсном пространстве. Эта обмотка способствует затуханию колебаний ротора при неустановившихся режимах синхронной машины, а также обеспечивает асинхронный пуск синхронных двигателей.
Синхронные машины номинальной мощностью до 5 кВт иногда изготавливают в обращенном исполнении с обмоткой возбуждения на статоре и трехфазной обмоткой на роторе.
Эффективность работы трехфазного синхронного генератора
Работа трехфазных синхронных машин в генераторном режиме сопровождается потерями энергии, которые но своему характеру аналогичны потерям в асинхронных машинах. В связи с этим эффективность работы трехфазного синхронного генератора характеризуется значением коэффициента полезного действия (кпд), который в условиях симметричной нагрузки определяется по формуле:
η = ( √3 UIcosφ)/( √3 UIcosφ+ΔP) ,
где U и I — действующие, линейные напряжение и ток, cosφ — коэффициент мощности приемников, ΔP — суммарные потери, отвечающие данной нагрузке синхронной машины.
Величина коэффициента полезного действия (кпд) синхронных генераторов зависит от величины нагрузки и коэффициента мощности приемников (рис 3).
Рис. 3. Графики зависимости коэффициента полезного действия трехфазного синхронного генератора от нагрузки и коэффициента мощности приемников.
Максимальное значение кпд соответствует нагрузке, близкой к номинальной, и составляет для машин средней мощности 0,88-0,92, а для генераторов большой мощности доходит до значения 0,96-0,99. Несмотря на высокое значение кпд в крупных синхронных машинах из-за большого количества выделяемого тепла приходится применять охлаждение обмоток водородом, дистиллированной водой или трансформаторным маслом, что способствуют лучшему отводу тепла, а также позволяет создавать более компактные и эффективные трехфазные синхронные машины.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Трехфазные синхронные генераторы
Электрические машины, преобразующие механическую энергию в электрическую, называют генераторами. Трехфазные синхронные генераторы являются единственным типом источников энергии, устанавливаемых на всех электрических станциях переменного тока, как малых, так и мощных систем. Наименование синхронные они получили благодаря синхронному вращению магнитных полей ротора и статора.
Принцип действия синхронного генератора основан на индуктировании э.д.с. в обмотке якоря в результате пересечения ее витков постоянным магнитным полем, создаваемым индуктором. При этом э. д. с. пропорцио-нальна числу витков W, частоте вращения ротора n, числу пар полюсов р и магнитному потоку индуктора Фm:
Е = 4,44 W f Фm ( 1 ) .
Частота переменной э. д. с: f = p · n / 60 , ( Гц ) ( 2 ).
Стандартная частота переменной э.д.с. в России как и большинстве стран мира принята 50 Гц. Поэтому при p = 1 ротор должен вращаться с п = 3000 об/мин.; при р = 2 — п = 1500 мин -1, при р = 3 — п = 1000 мин -1 и так далее. Вследствие этого э. д. с. генератора регулируют магнитным потоком Ф индуктора.
В генераторах основного исполнения ( в лаборатории, аудитория № 111 смотреть на разобранный генератор, установленный на столе) статор имеет чугунную станину, внутри которой установлен кольцевой магнитопровод, набранный из листов электротехнической стали. В пазах магнитопровода размещены одинаковые обмотки, смещенные по окружности статора одна относительно другой на 120 градусов. Эти обмотки называют фазными обмотками, а начала и концы соединены в лобовой части обмоток по схеме „звезда» или „треугольник». На клеммный щиток выведены соответственно 4 или 3 провода фаз генератора.
На роторе располагается обмотка возбуждения индуктора, укрепляемая на полюсах магнитопровода, набранного из листов электротехнической стали. Она питается постоянным током через щетки и контактные кольца от небольшого генератора постоянного тока (возбудителя), прикрепленного к одному из подшипниковых щитов генератора. (На электростанциях может быть отдельное исполнение возбудителя). Кроме того, на роторе генераторов небольшой мощности имеется крыльчатка для охлаждения обмоток и магнитопроводов. Ротор может иметь явно выраженные или неявно выраженные полюса.
Явнополюсными выполняют роторы тихоходных генераторов, предназначенных для работы с гидротурбинами. Неявнополюсными изготовляют роторы быстроходных (1500 — 3000 мин -1.) генераторов для паровых турбин и двигателей внутреннего сгорания.
На рис. 1 представлены роторы синхронных машин неявно полюсный (а) и явно полюсный (б):1 – сердечник ротора; 2 – обмотка возбуждения.
Синхронный генератор с самовозбуждением типа ПСГС — 6,25 имеет неподвижную магнитную систему (индуктор) и вращающийся якорь с обмоткой переменного трехфазного тока, подведенной к контактным кольцам. Станина выполнена из стальной трубы и представляет ярмо магнитной системы. К нему болтами прикреплены четыре полюса индуктоа. Они собраны из листов электротехнической стали толщиной 2 мм и скреплены между собой штифтами. Сердечники полюсов изолированы асбестовой бумагой, пропитанной в бакелитовом лаке. Катушки шунтовой обмотки возбуждения намотаны изолированным медным проводом круглого сечения, соединены
Рис. 2. Монтажная электрическая схема генератора ПСГС-6,25.
между собой последовательно, а концы — выведены на клеммное плато. Выводная коробка с клеммным плато расположена на станине. Для поглощения помех радиоприему, создаваемых генератором во время работы, применены конденсаторы. На внутренней стороне крышки выводной коробки наклеена монтажная схема генератора.
На ступице переднего подшипникового щита скомплектована траверса и прикреплена к ней при помощи болтов. К штырям траверсы прикреплены щеткодержатели. Их можно опускать вниз по мере изнашивания контактных колец.
На двух штырях траверсы собрана выпрямительная схема для питания цепей возбуждения. Она состоит из диодов, собранных по 3-фазной мостовой двухполупериодной схеме выпрямления (схема Ларионова). На каждом штыре закреплено по 6 диодов типа Д-205. На диоды напряжение подается с контактных колец через угольные щетки. Выпрямленное напряжение поступает на клеммное плато, а с него через регулировочный реостат на обмотки возбуждения полюсов индуктора.
Якорь состоит из цилиндрического сердечника — магнитопровода, 3-х фазной обмотки переменного тока, от которой выведены концы и соединены с контактными кольцами, центробежного вентилятора и вала с насаженными на него шариковыми подшипниками. Сердечник якоря набран из пластин электротехнической стали толщиной 0,5 мм, собран на валу, имеющем призматическую шпонку (она исключает проворачивание сердечника на валу). От продольного перемещения вдоль оси вала сердечник запрессован между якорными фланцами и закреплен упорным кольцом.
Обмотка переменного тока уложена в полузакрытых пазах якоря и закреплена в них текстолитовыми клиньями. На лобовые части обмотки с каждой стороны наложено по одному бандажу, состоящему из проволочных витков, спаянных между собой.
Техническая характеристика генератора: Ѕном =6,25 кВА; Uном =230 В; Iном =15,7 А; к.п.д.=76%; cosφ=0,8; f =0,8; nном =1500 мин-1.
Такими генераторами оснащены передвижные автомастерские для выработки электроэнергии в полевых условиях с целью выполнения ремонт-ных работ с применением электроинструмента, а также аварийного электроснабжения маломощных энергопотребителей (зернотоков, ферм и др.)
Рис. 3. Конструкция синхронного генератора малой мощности:
1 — кольца контактные; 2 — щеткодержатели; 3 — обмотка возбуждения ротора; 4 — полюсный наконечник; 5 — статор; 6 — вентилятор; 7 — вал ротора.
Источник: