Что такое неполное сцепление генов укажите причину этого явления

Что такое неполное сцепление генов укажите причину этого явления

Хромосомная теория

Хромосомная теория наследственности

Концепция данной теории заключается в том, что передача наследственной информации в ряду поколений осуществляется путем передачи хромосом, в которых в определенной линейной последовательности расположены гены.

Данная теория была сформулирована в начале XX века. Значительный вклад в ее развитие внес американский генетик Томас Морган.

Рекомендую осознать и запомнить следующие положения хромосомной теории:

  • Гены расположены в хромосомах в линейном порядке
  • Каждый ген занимает в хромосоме определенное место — локус
  • Гены, расположенные в одной хромосоме, образуют группу сцепления
  • Сцепление генов может нарушаться в результате кроссинговера
  • Частота кроссинговера между генами прямо пропорциональна расстоянию между ними
  • Расстояние между генами измеряется в морганидах (1 морганида — 1% кроссинговера)

Группы сцепления

В предыдущей статье были раскрыты суть и применение в задачах III закона Менделя, закона независимого наследования, в основе которого лежат гены, расположенные в разных хромосомах. Но что если гены лежат в одной хромосоме? Такие гены образуют группу сцепления, в этом случае говорят о сцепленном наследовании.

Группа сцепления — совокупность всех генов, расположенных в одной хромосоме, вследствие чего они наследуются совместно. Число групп сцепления равно гаплоидному набору хромосом: у женщины 23 группы сцепления (23 пара — половые хромосомы XX), а у мужчины — 24 группы сцепления (X и Y представляют собой две отдельные группы).

Сцепление генов

Томас Морган в своих экспериментах изучал наследование признаков плодовых мушек дрозофил: серый (A) — черный (a) цвет тела, длинные (B) — зачаточные (b) крылья. В первом эксперименте Морган скрестил чистые линии плодовых мушек: серых с длинными крыльями (AABB) и черных с зачаточными (aabb).

Только что вы видели первый закон Менделя (единообразия) в действии, правда, в несколько ином варианте — при дигибридном скрещивании. Но суть та же: в первом поколении все особи получаются единообразны по исследуемому признаку, с генотипом AaBb — с серым телом и длинными крыльями.

Далее Морган применил анализирующее скрещивание. Полученную в первом поколении дигетерозиготу (AaBb) он скрестил с черной особью с зачаточными крыльями (aabb). Результат весьма удивил Моргана и его коллег: помимо потомства с ожидаемыми фенотипами (серое тело + длинные крылья, черное тело + зачаточные крылья) были получены особи со смешанными признаками.

Потомство со смешанными признаками подразумевает под собой особи Aabb (серое тело + зачаточные крылья) и aaBb (черные тело + длинные крылья). Но откуда они могли взяться, если гены A и B находятся в одной хромосоме? Значит, образовались еще какие-то дополнительные гаметы, помимо AB и ab?

Объясняя полученные в потомстве фенотипы, которые содержали смешанные признаки, Томас Морган пришел к выводу, что между гомологичными хромосомами произошел кроссинговер, в результате которого образовались гаметы Ab, aB — кроссоверные гаметы.

Очевидно, что в данном случае расстояние между генами A и B было 17 морганид, так как каждой кроссоверной гаметы (соответственно и особей) образовалось по 8.5%. Не забывайте, что процент кроссинговера равен расстоянию между генами. Поскольку расстояние было 17 морганид = 17%, то на каждую из кроссоверных гамет приходится половина — 8.5%

Пример решения генетической задачи №1

«Катаракта и полидактилия у человека обусловлены доминантными аутосомными генами, расположенными в одной хромосоме. Гены полностью сцеплены. Какова вероятность родить здорового ребенка в семье, где муж нормален, жена гетерозиготна по обоим признакам, мать жены также страдала обеими аномалиями, а отец был нормален».

Очень важно обратить внимание на то, что «гены полностью сцеплены» — это говорит об отсутствии кроссинговера, и то, что мы заметили это, обеспечивает верное решение задачи.

Самое главное, что вам следует усвоить: поскольку гены полностью сцеплены (кроссинговер отсутствует), женщина с генотипом AaBb может образовать только два типа гамет — AB, ab. Кроссоверные гаметы (Ab, aB) не образуются. Всего возможных генотипов потомков получается два, из которых здоров только один — aabb. Шанс родить здорового ребенка в такой семье ½ (50%).

Пример решения генетической задачи №2

«Гены доминантных признаков катаракты и эллиптоцитоза локализованы в 1-й аутосоме. Гены неполностью сцеплены. Женщина, болеющая катарактой и эллиптоцитозом, отец которой был здоров, выходит замуж за здорового мужчину. Определите возможные фенотипы потомства и вероятность рождения больного обеими аномалиями ребенка в этой семье».

Ключевые слова в тексте этой задачи, на которые следует обратить внимание: «гены неполностью сцеплены». Это означает, что между ними происходит кроссинговер.

Генотип женщины остается неясен из текста задачи. Раз она больна, то он может быть: AaBb, AABB, AABb, AaBB. Однако в тексте дано то, что развеет сомнения: «отец которой был здоров». Если ее отец был здоров, то его генотип был aabb, значит он передал дочери гамету ab. Теперь становится очевидно, что генотип дочери AaBb — она дигетерозиготна.

В данном случае между генами A и B произошел кроссинговер, их сцепление нарушилось. В результате образовались кроссоверные гаметы Ab, aB — которые привели к образованию особей с со смешанными признаками (Aabb, aaBb). Вероятность рождения в этой семье ребенка, больного обеими аномалиями, составляет ¼ (25%).

Наследование, сцепленное с полом

Половые хромосомы X и Y определяют пол человека. Генотип XX характерен для женщин, а XY — для мужчин. Мужская Y-хромосома не содержит аллелей многих генов, которые есть в X-хромосоме, вследствие этого наследственными заболеваниями, сцепленными с полом, чаще болеют мужчины.

Природа, несомненно, бережет женских особей. Женщины имеют две гомологичные хромосомы XX, и если ген наследственного заболевания попал в одну из X-хромосом, то чаще всего в другой X-хромосоме окажется «здоровый» ген, доминантный, которой подавит действие рецессивного гена. С генетической точки зрения, женщина будет носительницей заболевания, может его передать по поколению, но сама болеть не будет.

У мужчин если ген заболевания оказался в X-хромосоме, то не проявиться он не может. Именно по этой причине мужчины чаще страдают дальтонизмом, гемофилией и т.д.

Не у всех организмов особь мужского пола характеризуется набором хромосом XY, а женского — XX. У пресмыкающихся, птиц, бабочек женские особи имеют гетерогаметный пол- XY, а мужские — XX. То же самое относится к домашним курам: петух — XX, курица — XY.

Решим несколько задач по теме наследования, сцепленного с полом. Речь в них будет идти о сцепленных с полом признаками — признаками, гены которых лежат не в аутосомах, а в гетеросомах (половых хромосомах).

Пример решения генетической задачи №3

«Рецессивный ген дальтонизма располагается в X-хромосоме. Женщина с нормальным зрением (отец был дальтоник) выходит замуж за мужчину с нормальным зрением, отец которого был дальтоником. Определите возможные фенотипы потомства».

Подробности о родословной важны и помогают заполнить белые пятна. Если отец женщины был дальтоником (X d Y), то очевидно, что он передал ей хромосому X d , так как от отца дочери всегда передается X-хромосома. Значит женщина гетерозиготна по данному признаку, а у мужчины возможен лишь один вариант здорового генотипа — X D Y. То, что его отец был дальтоником несущественно, ведь отец всегда передает сыну Y-хромосому.

Возможные фенотипы потомства:

  • X D X D , X D X d — фенотипически здоровые девочки
  • X D Y — здоровый мальчик
  • X d Y — мальчик, который болен дальтонизмом

Пример решения генетической задачи №4

«Гипоплазия зубной эмали наследуется как сцепленный с X-хромосомой доминантный признак, шестипалость — как аутосомно-доминантный. В семье, где мать шестипалая, а у отца гипоплазия, родился пятипалый здоровый мальчик. Напишите генотипы всех членов семьи по данным признакам. Возможно ли у них рождение ребенка с двумя аномалиями одновременно?»

Ответ на вопрос: «Каковы генотипы матери и отца?» — лежат в потомстве. Пятипалый здоровый мальчик имеет генотип aaX b Y. Чтобы сформировался такой генотип, от матери должна прийти гамета aX b , а от отца — aY. Выходит, что единственно возможный генотип матери — AaX b X b , а генотип отца — aaX B Y.

Рождение ребенка с двумя аномалиями возможно — AaX B X b , вероятность такого события ¼ (25%).

Пример решения генетической задачи №5

«Рецессивные гены, кодирующие признаки дальтонизма и гемофилии, сцеплены с X-хромосомой. Мужчина с нормальным цветовым зрением и гемофилией женится на здоровой женщине, отец которой был дальтоником, но не гемофиликом. Известно, что мать женщины была гомозиготна по исследуемым признакам. Какое потомство получится от брака их дочери со здоровым мужчиной?»

Генотип мужчины вопросов не вызывает, так как единственный возможный вариант — X hD Y. Генотип женщины дает возможность узнать ее отец (X Hd Y), который передал ей гамету X Hd (отец всегда передает дочке X хромосому, а сыну — Y), следовательно, ее генотип — X HD X Hd

Как оказалось, возможны два варианта генотипа дочери: X HD X hD , X Hd X hD . Генотип здорового мужчины X HD Y. Следуя логике задачи, мы рассмотрим два возможных варианта брака.

Не забывайте, что на экзамене схема задачи не является ответом. Ответ начинается только после того, как вы напишите слово «Ответ: . «. В ответе должны быть указаны все фенотипы потомства, их описание, что возможно покажется рутинными при большом числе потомков, но весьма приятным, если вы верно решили задачу и получили за нее заслуженные баллы

© Беллевич Юрий Сергеевич 2018-2021

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Биология. 10 класс

Хромосомная теория наследственности

Сцепленное наследование генов

Необходимо запомнить

Сцепление генов – это совместное наследование генов, расположенных в одной и той же хромосоме. Количество групп сцепления соответствует гаплоидному числу хромосом, то есть у дрозофилы 4. Природу сцепленного наследования объяснил Морган с сотрудниками. В качестве объекта исследования они избрали плодовую муху дрозофилу, которая оказалась очень удобной моделью для изучения данного феномена, так в клетках её тела находится только 4 пары хромосом и имеет место высокая скорость размножения (в течение года можно исследовать более 20-ти поколений). Итак, сцепленными признаками называются признаки, которые контролируются генами, расположенными в одной хромосоме. Естественно, что они передаются вместе в случаях полного сцепления (закон Моргана). Полное сцепление встречается редко, обычно – неполное, из-за влияния кроссинговера (перекрещивания и обмена участками гомологичных хромосом в процессе мейоза). То есть, гены одной хромосомы переходят в другую, гомологичную ей.

Читайте также  Что такое автоматическая трансмиссия с вариатором

Частота кроссинговера зависит от расстояния между генами. Чем ближе друг к другу расположены гены в хромосоме, тем сильнее между ними сцепление и тем реже происходит их расхождение при кроссинговере, и, наоборот, чем дальше друг от друга отстоят гены, тем слабее сцепление между ними и тем чаще возможно его нарушение.

На рисунке 1 слева : расстояние между генами А и В маленькое, вероятность разрыва хроматиды именно между А и В невелика, поэтому сцепление полное, хромосомы в гаметах идентичны родительским (два типа), других вариантов не появляется.

На рисунке 1 справа: расстояние между генами А и В большое, повышается вероятность разрыва хроматиды и последующего воссоединения крест-накрест именно между А и В , поэтому сцепление неполное, хромосомы в гаметах образуются четырёх типов – 2 идентичные родительским (некроссоверные) + 2 кроссоверных варианта.

Количество разных типов гамет будет зависеть от частоты кроссинговера или расстояния между анализируемыми генами. Расстояние между генами исчисляется в морганидах – единицах расстояния между генами, находящимися в одной хромосоме. 1 морганида соответствует 1 % кроссинговера. Такая зависимость между расстояниями и частотой кроссинговера прослеживается только до 50 морганид. Частота кроссинговера между определенной парой генов – довольно постоянная величина (хотя радиация, химические вещества, гормоны, лекарства влияют на нее; например, высокая температура стимулирует кроссинговер).

Пример, основанный на опытах Моргана

Гены, расположенные в одной хромосоме, наследуются совместно. Фенотипы А – серое тело, нормальные крылья (повторяет материнскую форму). Б – тёмное тело, короткие крылья (повторяет отцовскую форму). В – серое тело, короткие крылья (отличается от родителей). Г – тёмное тело, нормальные крылья (отличается от родителей). В и Г получены в результате кроссинговера в мейозе.

Если скрестить мушку дрозофилу, имеющую серое тело и нормальные крылья (на рисунке самка), с мушкой, обладающей тёмной окраской и зачаточными (короткими) крыльями (на рисунке самец), то в первом поколении гибридов все мухи будут серыми с нормальными крыльями (А). Это гетерозиготы по двум парам аллельных генов, причём ген, определяющий серую окраску брюшка, доминирует над тёмной окраской, а ген, обусловливающий развитие нормальных крыльев, — доминирует над геном недоразвитых крыльев.

При анализирующем скрещивании гибрида F 1 с гомозиготной рецессивной дрозофилой (Б) подавляющее большинство потомков F 2 будет сходно с родительскими формами.

Это происходит потому, что гены, отвечающие за серое тело и нормальные крылья– сцепленные гены, также как и гены, отвечающие за тёмное тело и короткие крылья, т. е. они находятся в одной хромосоме. наследование сцепленных генов называют сцепленным наследованием.

Сцепление может нарушаться. Это доказывает наличие особей В и Г на рисунке, т. е. если бы сцепление не нарушалось, то этих особей бы не существовало, однако они есть. Это происходит в результате кроссинговера, который и нарушает сцепленность этих генов.

На рисунке 3 опыт Моргана отображен подробно. Несцепленное наследование: два гена находятся в разных хромосомах, гетерозигота с равной вероятностью дает четыре типа гамет:

Сцепленное наследование : два гена находятся в одной хромосоме.

а) При полном сцеплении гетерозигота дает только два типа гамет.

б) При неполном сцеплении гетрозигота дает четыре типа гамет, но не с равной вероятностью.

На вышесказанном строится хромосомная теория наследственности Моргана:

1. Гены находятся в хромосомах и расположены в линейной последовательности на определенных расстояниях друг от друга.

2. Гены, расположенные в одной хромосоме, составляют группу сцепления. Число групп сцепления равно гаплоидному числу хромосом. Признаки, гены которых находятся в одной хромосоме, наследуются сцепленно (т. е. в тех же сочетаниях, в которых они были в хромосомах исходных родительских форм).

3. Новые сочетания генов, расположенных в одной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза. Частота кроссинговера зависит от расстояния между генами.

4. Учитывая линейное расположение генов в хромосоме и частоту кроссинговера как показателя расстояния между генами, можно построить карты хромосом. За единицу расстояния между генами принята частота кроссинговера равная 1 % (морганида, сантиморган, сМ).

Задачи на нахождение расстояния между генами

Решение задачи на определение вероятности рождения здоровый и больных детей

Наследование признаков, сцепленных с полом

Сцепленными с полом называются признаки, гены которых расположены не в аутосоме (неполовой хромосоме), а в гетеросоме (половой хромосоме). Схема решения задач на наследование признаков, сцепленных с полом, иная, чем на аутосомное моногибридное скрещивание. В случае, если ген сцеплен с Ххромосомой, он может передаваться от отца только дочерям, а от матери в равной степени и дочерям, и сыновьям. Если ген сцеплен с Ххромосомой и является рецессивным, то у самки он проявляется только в гомозиготном состоянии. У самцов второй Х-хромосомы нет, поэтому такой ген проявляется всегда.

При решении задач этого типа используются не символы генов (А, а, В, b), как при аутосомном наследовании, а символы половых хромосом X, Y с указанием локализованных в них генов (X А , X а ).

Аномалии, сцепленные с полом, чаще контролируются рецессивными генами, локализованы в Х-хромосоме и проявляются при генотипе ХY (т. е. у самцов млекопитающих и самок птиц).

Выше были рассмотрены примеры, где ген, сцепленный с полом, располагался в Х-хромосоме, но есть гены, локализованные в Y-хромосоме. У видов, у которых мужской пол гетерогаметен, этот ген может передаваться только самцам. У человека ген одного из видов синдактилии, выражающейся в образовании перепонки между 2 и 3 пальцами на ноге, локализован на Y-хромосоме, поэтому синдактилия возникает только у мужчин. Известна еще одна аномалия – гипертрихоз края ушной раковины (ряды волос на ухе), передающиеся по такому же механизму. В изучаемой семье с этой аномалией она передавалась в пяти поколениях по мужской линии.

«Полное и неполное сцепление генов. Генетические карты хромосом».

Поурочное планирование 10 класс

Тема: «Полное и неполное сцепление генов. Генетические карты хромосом».

Цель урока: ознакомить учащихся с процессом полного и неполного сцепления генов; и сформировать представление о генетических картах хромосом.

Учебно – воспитательные задачи:

Раскрыть сущность явления сцепленного наследования генов.

Сформировать знания об основных положениях закона Т. Моргана.

Познакомить с принципом составления генетических карт

Развивать логическое мышления учащихся.

Оборудование, наглядные пособия : таблицы по общей биологии, иллюстрирующие сцепленное наследование генов и признаков, презентация к уроку, задачи на закрепление нового материала.

Тип урока: Урок изучения нового материала.

Методы: объяснительно — иллюстративный.

I Организационный момент

Проверка личного состава учащихся и визуальной готовности класса к уроку.

II Проверка знаний учащихся

1. Назовите три закона Г. Менделя?

2. Каких правил придерживался Г. Мендель при проведении своих опытов?

3. Сформулируйте закон чистоты гамет. Кому принадлежит открытие этого закона?

4. Всегда ли признаки можно чётко разделить на доминантные и рецессивные?

5. Какое название получило это явление?

6. Всегда ли по фенотипу можно определить, какие гены содержит данная особь? Приведите пример.

7. Можно ли установить генотип особей, которые не различаются по фенотипу? Какой метод используют для этого?

8. Какими особенностями характеризуется дигибридное скрещивание?

Молодцы! С этим этапом работы Вы справились

III Изучение нового материала:

Сцепленное наследование генов

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.

Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.

Закон Томаса Моргана

Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.

Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет ( АВ , аВ , Аb , аb ), а при условии полного сцепления такой же дигибрид даст только два типа гамет ( АВ и аb ), так как эти гены расположены в одной хромосоме.

Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.

Изучая закономерности наследования генов, локализанных в одной и той же хромосоме , Морган пришел к выводу, что они наследуются сцепленно . Это и есть закон Т.Моргана.

Кроссинговер — процесс обмена участками гомологичных хромосом во время конъюгации в профазе I мейоза. Помимо мейотического, описан также митотический кроссинговер. Хромосома разделяется на эти участки в определённых точках, одних и тех же для одного вида, что может быть определением вида на генетическом уровне, месторасположение этих точек задаётся единственным геном.

Поскольку кроссинговер вносит возмущения в картину сцепленного наследования, его удалось использовать для картирования «групп сцепления» (хромосом). Возможность картирования была основана на предположении о том, что, чем чаще наблюдается кроссинговер между двумя генами , тем дальше друг от друга расположены эти гены в группе сцепления и тем чаще будут наблюдаться отклонения от сцепленного наследования.

Полное и неполное сцепление

Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.

1) Независимое наследование .

Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.

2) Полное сцепление генов .

При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.

Читайте также  Что используют гимнасты для лучшего сцепления рук со снарядом

3) Неполное сцепление генов .

В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аbаb ; аВаb . Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ │ и аb │ образует кроссоверные гаметы Аb │ и аВ │. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.

Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.

Генетические карты

Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.

Рассмотрим порядок составления генетических карт.

1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.

2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.

3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ . Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.

Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.

IV Закрепление знаний

Решение генетической задачи

Самку дрозофилы, гетерозиготную по рецессивным генам темной окраски тела и миниатюрных крыльев, скрестили с самцом, имевшим темное тело и миниатюрные крылья. От этого скрещивания было получено:

– 244 мухи с темным телом и миниатюрными крыльями;
– 20 мух с серой окраской тела и миниатюрными крыльями;
– 15 мух с темной окраской тела и нормальными крыльями;
– 216 мух с серой окраской тела и нормальными крыльями.

Исходя из приведенных данных определите, являются две эти пары генов сцепленными или нет. Как гены сцеплены?

А – серое тело
а – темное тело
В – нормальные крылья
b – миниатюрные крылья

Характер наследования генов А и В – ?

Результаты расщепления среди гибридов (два фенотипических класса являются господствующими и повторяют фенотипически и генотипически родительские формы, а два других класса фенотипов представлены небольшим количеством особей) свидетельствуют о неполном сцепление генов А и В.

Ответ : гены А и В наследуются сцеплено; сцепление носит неполный характер.

VI Домашнее задание

§41, стр.161-164. Ответить на вопросы стр.165.

Задача №1. Дигетерозиготное растение гороха с гладкими семенами и усиками скрестили с растением с морщинистыми семенами без усиков. Известно, что оба доминантных гена (гладкие семена и наличие усиков) локализованы в одной хромосоме, кроссинговера не происходит. Составьте схему решения задачи. Определите генотипы родителей, фенотипы и генотипы потомства, соотношение особей с разными генотипами и фенотипами. Какой закон при этом проявляется?

А — гладкие семена, а — морщинистые семена
B — наличие усиков, b — без усиков

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

В начале XX в., когда генетики стали проводить множество экспериментов по скрещиванию на самых различных объектах (кукуруза, томаты, мыши, мушки дрозофилы, куры и др.), обнаружилось, что не всегда проявляются закономерности, установленные Менделем. Например, не во всех парах аллелей наблюдается доминирование. Вместо него возникают промежуточные генотипы, в которых участвуют обе аллели. Обнаруживается также много пар генов, не подчиняющихся закону независимого наследования генов, особенно если пара аллельных генов находится в одной и той же хромосоме, т. е. гены как бы сцеплены друг с другом. Такие гены стали называть сцепленными.

Механизм наследования сцепленных генов, а также местоположение некоторых сцепленных генов установил американский генетик и эмбриолог Т. Морган. Он показал, что закон независимого наследования, сформулированный Менделем, действителен только в тех случаях, когда гены, несущие независимые признаки, локализованы в разных негомологичных хромосомах. Если же гены находятся в одной и той же хромосоме, то наследование признаков происходит совместно, т. е. сцепленно. Это явление стали называть сцепленным наследованием, а также законом сцепления или законом Моргана.

Закон сцепления гласит: сцепленные гены, расположеные в одной хромосоме, наследуются совместно (сцепленно) .

Примеров сцепленного наследования генов известно очень много. Например, у кукурузы окраска семян и характер их поверхности (гладкие или морщинистые), сцепленные между собой, наследуются совместно. У душистого горошка (Lathyrus odoratus) сцепленно наследуются окраска цветков и форма пыльцы.

Все гены одной хромосомы образуют единый комплекс – группу сцепления. Они обычно попадают в одну половую клетку – гамету и наследуются вместе.

Группа сцепления — все гены одной хромосомы. Число групп сцепления равно количеству хромосом в гаплоидном наборе. Например, у человека 46 хромосом — 23 группы сцепления, у гороха 14 хромосом — 7 групп сцепления, у плодовой мушки дрозофилы 8 хромосом — 4 группы сцепления.

Гены, входящие в группу сцепления, не подчиняются третьему закону Менделя о независимом наследовании. Однако полное сцепление генов встречается редко. Если гены располагаются близко друг к другу, то вероятность перекреста хромосом мала и они могут долго оставаться в одной хромосоме, а потому будут передаваться по наследству вместе. Если же расстояние между двумя генами на хромосоме велико, то существует большая доля вероятности, что они могут разойтись по разным гомологичным хромосомам. В этом случае гены подчиняются закону независимого наследования.

Таким образом, третий закон Менделя отражает частое, но не абсолютное явление в наследовании признаков.

Основные доказательства передачи наслед-ственности были получены в экспериментах Моргана и его сотрудников.

Таким образом, сцепленное наследование — явление совместного наследования генов, локализованных в одной хромосоме.

Сцепленное наследование генов

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.
У любого организма генов значительно больше, чем хромосом. Например, у человека имеется около миллиона генов, а хромосом всего 23 пары. Следовательно, в одной хромосоме размещается в среднем несколько тысяч генов. Гены, расположенные в одной хромосоме, называют сцепленными. Все гены этой хромосомы образуют группу сцепления, которая при мейозе обычно попадает в одну гамету.
Значит, гены, входящие в одну группу сцепления, не подчиняются закону независимого наследования, а при дигибридном скрещивании вместо ожидаемого расщепления по фенотипу в соотношении 9:3:3:1 дают соотношение 3:1, как при моногибридном скрещивании (рис. 72).

Расщепление по фенотипу при независимом и сцепленном наследовании на примере плодовой мушки дрозофилы

Закономерности сцепленного наследования были установлены американск 1000 им биологом Томасом Морганом (1866-1945). В качестве объекта он использовал плодовую муху дрозофилу. У дрозофилы окраску тела и длину крыльев определяют следующие пары аллелей: А — серое тело, а — черное тело, В — длинные крылья, b — зачаточные крылья. Гены, отвечающие за окраску тела и длину крыльев, находятся в одной паре гомологичных хромосом и наследуются сцепленно.
Схематично пары гомологичных хромосом и локализованных в них генов можно изобразить так: ; . Для сравнения представим запись генов, локализованных в разных парах гомологичных хромосом: ; .
При скрещивании дрозофилы с серым телом и длинными крыльями с дрозофилой, имеющей черное тело и зачаточные крылья, все гибриды первого поколения имели серую окраску тела и длинные крылья (рис. 73,
%D0%A0%D0%B8%D1%81.73 %D0%97%D0%B0%D0%BA%D0%BE%D0%BD%D0%BE%D0%BC%D0%B5%D1%80%D0%BD%D0%BE%D1%81%D1%82%D0%B8 %D1%81%D1%86%D0%B5%D0%BF%D0%BB%D0%B5%D0%BD%D0%BD%D0%BE%D0%B3%D0%BE %D0%BD%D0%B0%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F %D0%BF%D1%80%D0%B8%D0%B7%D0%BD%D0%B0%D0%BA%D0%BE%D0%B2
%D0%90-%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7%D0%B8%D1%80%D1%83%D1%8E%D1%89%D0%B5%D0%B5 %D1%81%D0%BA%D1%80%D0%B5%D1%89%D0%B8%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5′);» >А).
При дальнейшем скрещивании между собой гибридных мух первого поколения в F2 не произошло ожидаемого расщепления по фенотипу 9:3:3:1. Вместо этого в F2 были получены мухи с родительскими фенотипами в соотношении примерно 3:1. Появление в F2 двух фенотипов вместо четырех позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме. Так был установлен закон Т.Моргана: гены, расположенные в одной хромосоме, наследуются совместно — сцепленно, то есть наследуются преимущественно вместе.
Однако при дигибридном скрещивании при сцепленном наследовании признаков не всегда появляются особи только двух фенотипов. Иногда появляются особи еще двух фенотипов с перекомбинацией (новым сочетанием) родительских признаков: серое тело — зачаточные крылья, черное тело — длинные крылья. (Особей с такими фенотипами немного — около 8,5% каждого типа.) Почему же нарушается сцепление генов и появляются особи с новыми фенотипами? Было установлено, что сцепление генов может быть полным и неполным.
Полное сцепление наблюдается в том случае, если скрещиваются серый самец с длинными крыльями и самка с черным телом и зачаточными крыльями. Расщепление по фенотипу в этом случае будет 1:1, то есть наблюдается полное сцепление генов в одной хромосоме.
При скрещивании серой длиннокрылой самки с самцом, имеющим черное тело и зачаточные крылья, расщепление по фенотипу будет примерно 41,5:41,5:8,5:8,5, что характеризует неполное сцепление. Причина нарушения сцепления заключается в том, что в ходе мей-оза происходит кроссинговер и гомологичные хромосомы обмениваются своими участками. В результате гены, расположенные в одной из гомологичных хромосом, оказываются в другой хромосоме. Возникают новые сочетания признаков.
У самцов дрозофил в мейозе кроссинговер не происходит, поэтому при скрещивании серого длиннокрылого самца дрозофилы с рецессивной самкой с черным телом и зачаточными крыльями сцепление будет полным. Неполное сцепление наблюдается в том случае, если самка гетерозиготна, а самец гомозиготен. В данном примере кроссинговер происходит примерно у 17% самок.
Таким образом, если не происходит перекреста хромосом и обмена генами, то наблюдается полное сцепление генов. При наличии кроссин-говера сцепление генов бывает неполным. Благодаря перекресту хромосом возникают новые сочетания генов и признаков. Чем дальше друг от друга расположены гены в хромосоме, тем больше вероятность перекреста между ними и обмена участками хромосом.

Данные о частоте перекреста между гомологичными хромосомами используются для составления генетических карт, которые показывают расположение генов в хромосомах и расстояния между отдельными генами.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите .

Сцепленное наследование. Закон Моргана. Генетика пола

Урок 25. Подготовка к ЕГЭ по биологии

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Читайте также  Шланг сцепления хендай солярис механика

Получите невероятные возможности

Конспект урока «Сцепленное наследование. Закон Моргана. Генетика пола»

Третий закон Менделя — закон независимого наследования признаков, или независимого комбинирования генов, ― справедлив в тех случаях, когда гены рассматриваемых признаков располагаются в разных гомологичных хромосомах.

Что же будет, если признаки будут располагаться в одной хромосоме?

После открытых Менделем законов в 1906 году учёные Уильям Бэтсон и Реджинальд Пэннет обнаружили, что в некоторых случаях расщепления по правилам Менделя не происходит.

Например, у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого расщепления в потомстве в соотношении 3:1 (три к одному) и потомки остаются похожи на родительскую особь. При последующем анализе оказалось, что гены этих двух признаков лежат в одной хромосоме.

Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался американский генетик Томас Морган.

Он предложил закон сцепленного наследования (закон Моргана): гены, которые находятся в одной хромосоме, при мейозе попадают в одну гамету, то есть наследуются сцеплено.

Что значит сцеплено? Это значит, что гены находятся в одной хромосоме. И между ними возникают силы сцепления, то есть силы взаимодействия. И чем ближе эти гены, тем сильнее взаимодействие.

Каковы же принципы наследования генов, расположенных в одной хромосоме?

Вспомним что Мендель проводил свои опыты на горохе. При дигибридном скрещивании во втором поколении соотношение между жёлтыми и зелёными горошинами составляло 3:1.

У Моргана основными объектами для изучения были фруктовые мушки дрозофилы. Дрозофила имеет диплоидный набор хромосом равный 8.

Морган скрещивал двух мушек: самка была серой с длинными крыльями, а самец с черным телом и зачаточными крыльями. В первом поколении особь имела серое тело и длинные крылья.

Значит, ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обуславливающий развитие нормальных крыльев, — над геном недоразвитых (зачаточных) крыльев.

При дальнейшем скрещивании между собой гибридных мух первого поколения во втором поколении появляются два фенотипа вместо четырёх ожидаемых.

Это позволило сделать вывод, что гены окраски тела и длины крыльев дрозофил находятся в одной хромосоме.

Вспомним, что символы А-большое Бэ-большое А-большое Бэ-большое и а-малое бэ-малое а-малое бэ-малое располагаются как бы друг под другом с двумя чёрточками. Чёрточками условно обозначают хромосомы.

Однако в этих же опытах было описано отклонение от закона Моргана.

При скрещивании дигетерозиготной особи, которая получилась в первом поколении, и чёрной мушки с зачаточными крыльями, имеющей оба рецессивных признака. Получился необычный результат: среди гибридов второго поколения было небольшое число особей с перекомбинацией тех признаков, гены которых лежат в одной хромосоме.

В потомстве явно преобладали особи с признаками родительских форм (41,5 % были серые длиннокрылые и 41,5 % — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5 % были серые с зачаточными крыльями и 8,5 % — черные длиннокрылые).

Что-бы объяснить появление особей с рекомбинантными признаками, необходимо вспомнить деление мейоза. А именно то, что в профазу первого мейоза гомологичные хромосомы конъюгируют (сближаются) и могут обмениваться гомологичными участками. Этот процесс называется кроссинговером. Он необходим для повышения разнообразия потомков.

Процесс кроссинговера был открыт Томасом Морганом и его сотрудниками при очередном скрещивании дрозофил.

При кроссинговере происходит нарушение закона Моргана, и гены одной хромосомы не наследуются сцеплено, так как часть из них заменяется на аллельные гены гомологичной хромосомы.

Происходит обмен участками хромосом между генами А и В, появляются гаметы А-большое бэ-малое и а-малое Бэ-большое, и, как следствие, в потомстве образуются четыре группы фенотипов.

Явление кроссинговера позволило лаборатории Томаса Моргана установить расположение каждого гена в хромосоме и составить хромосомные карты.

Хромосомная карта — это графическое изображение хромосомы, на котором определённые локусы (гены) отмечены соответственно расстоянию между ними.

Определить, в каких участках хромосом произойдёт кроссинговер, достаточно сложно.

Томас Морган доказал, что частота кроссинговера между генами прямо пропорциональна расстоянию между ними в хромосоме. Другими словами, можно сказать, что чем дальше гены находятся друг от друга в хромосоме, тем чаще между ними происходит кроссинговер.

Например, если рассматривать 2 гена А и Дэ, мы можем увидеть 2 случая.

Если два гена А и Дэ находятся по разные стороны перекрёста, то они разойдутся в разные хромосомы при любом варианте кроссинговера. В данном случае А-большое дэ-малое и а-малое Дэ-большое.

Но если гены, например, А-большое и Дэ-большое, расположены в хромосоме рядом по одну сторону от перекрёста, тогда после прохождения кроссинговера новых сочетаний аллелей данных двух генов мы не увидим.

Различают неполное и полное сцепление. Неполное сцепление — это разновидность сцепленного наследования, при котором гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Полное сцепление — это разновидность сцепленного наследования, при котором гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным.

Исходя из своих открытий, Томас Морган сформулировал хромосомную теорию наследственности.

Первое положение этой теории гласит: ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группу сцепления генов.

Второе положение утверждает, что аллельные гены (гены, которые отвечают за один признак) расположены в строго определённых местах (локусах) гомологичных хромосом.

Согласно третьему положению, гены располагаются в хромосомах линейно, то есть друг за другом.

В ещё одном дополнительном положении говорится, что в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т. е. может происходить кроссинговер.

Генетическое определение пола

Большинство животных являются раздельнополыми организмами. Но как так получается, что на свет особи женского и мужского пола рождаются примерно в одинаковом количестве? То есть расщепление по половой принадлежности происходит в соотношении 1:1 (один к одному).

Ещё Грегор Мендель, изучая закономерности наследования признаков, заметил, что расщепление 1:1 в потомстве по какому-либо признаку наблюдается в тех случаях, когда одна из родительских особей гетерозиготная (А-большое а-малое) по этому признаку, а вторая — рецессивная гомозиготная (а-малое а-малое).

В результате наблюдений было сделано предположение, что один из полов (тогда было неясно, какой именно) гетерозиготен, а второй гомозиготен по гену, который определяет пол организма.

Понять, как определяется пол будущей особи, учёные смогли в начале 20-го века. Современную теорию наследования пола разработал Томас Морган и его сотрудники. Они установили, что самцы и самки различаются по набору хромосом.

Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, их называют — аутосомами. Аутосомы — это не половые хромосомы.

А хромосомы, по которым женский и мужской пол отличаются друг от друга, называются — половыми хромосомами.

В хромосомном наборе клеток млекопитающих и человека женский пол имеет две одинаковые хромосомы (тип X (икс) X (икс)), а мужской пол — неодинаковые половые хромосомы (тип XУ, где X-хромосома более крупная).

Томас Морган заметил, что у самки дрозофилы три пары аутосом и одна пара одинаковых, так называемых Икс-хромосом. А у самцов те же три пары аутосом и две разные половые хромосомы — икс-игрек.

При формированиии половых клеток — гамет — во время мейоза у самок будет образовываться один тип гамет: 3 аутосомы плюс Икс-хромосома. А у самцов в одинаковом количестве будут образовываться два типа гамет: 3 аутосомы + Икс-хромосома или 3 аутосомы плюс Игрек-хромосома.

Теоретически при оплодотворении гамета самки с равной вероятностью может встретиться с любой из гамет самца.

Например, если при оплодотворении с яйцеклеткой сольётся сперматозоид с икс-хромосомой, то из зиготы разовьётся самка. А если с игрек-хромосомой, то самец.

Соотношение полов при таком скрещивании теоретически всегда будет 1:1.

Таким образом пол будущей особи определяется во время оплодотворения и зависит от того, какой набор половых хромосом сформируется в тот момент.

Так как самки дрозофилы способны производить только один тип гамет (с икс (Х) половой хромосомой), их пол называют гомогаметным.

А так как самцы дрозофилы производят два вида гамет (и с Икс (Х) и с Игрек (Y) половыми хромосомами, их пол называют гетерогаметным.

Хромосомный набор человека представлен 46 хромосомами. Из них у женщины и мужчины в каждой клетке по 22 пары аутосом-неполовых хромосом. И по паре половых хромосом. У женщины это две икс-хромосомы. У мужчин одна пара половых из которых одна икс, вторая игрек.

Наследование признаков, сцепленных с полом.

В Y-хромосоме находятся гены, которые необходимы для нормального развития мужских половых признаков, а в Икс-женских.

Но не все эти гены отвечают за признаки, которые имеют отношение к полу.

Расположение гена в половой хромосоме называют сцеплением гена с полом.

В соматических клетках женщины по две х-хромосомы, поэтому за каждый признак отвечает по два расположенных в них гена, а в клетках организма мужчины всего одна х-хромосома и все полторы сотни генов, расположенные в ней (и доминантные, и рецессивные), ― обязательно проявляются в фенотипе.

Изучением наследования генов, локализованных в половых хромосомах, занимался Томас Морган.

Он скрещивал красноглазых самок с белоглазыми самцами. Так как у дрозофилы красный цвет глаз доминирует над белым, то в первом поколении все потомство оказывалось красноглазым.

Далее при скрещивании между собой гибридов первого поколения во втором поколении все самки оказываются красноглазыми, а среди самцов — половина белоглазых и половина красноглазых.

При скрещивании между собой белоглазых самок и красноглазых самцов в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. Во втором поколении половина самок и самцов — красноглазые, половина — белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х-хромосоме.

Икс с доминантным геном отвечает за красный цвет глас. Икс с рецессивным геном за белый цвет глаз, а Y-хромосома таких генов не содержит.

У человека некоторые заболевания сцеплены с полом. К ним относится, например, гемофилия и дальтонизм.

Рассмотрим наследование дальтонизма.

Нормальное цветовосприятие обусловлено доминантным аллелем, который находится в X-хромосоме. Его рецессивная аллельная пара в гомо- и гетерозиготном состоянии приводит к развитию дальтонизма.

Отсюда понятно, почему дальтонизм чаще встречается у мужчин, чем у женщин: у мужчин только одна X-хромосома, и если в ней находится рецессивный аллель, определяющий дальтонизм, он обязательно проявляется.

У женщины две X хромосомы: она может быть, как гетерозиготной, так и гомозиготной по этому гену. И только при гомозиготном сочетании этих генов дальтонизм проявится.

Источник: nevinka-info.ru

Гаджет битва